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Abstract—Object detection and sub-category recognition play
important roles in the field of computer vision. Most of the
existing approaches separate detection and recognition into two
sequential parts. We argue, however, detection and recognition
could share information of each other to achieve a better
performance for both of them. In this paper, a new approach
to joint detection and recognition based on Deformable Part
Model (DPM) is presented. Our approach extends DPM from
pure object detection to simultaneous detection and sub-category
recognition. A multi-objective optimization function is formulat-
ed. It integrates supervised sub-category recognition into DPM
training process, using structural SVM with latent variables. The
experiments show that our approach achieves a very exciting
result in a challenging vehicle data set.

I. INTRODUCTION

Computer vision is trying to answer the question of “what is
where” on earth [1]. Object detection answers the question of
“where”, and recognition answers “what”. Fast and accurate
object detection and recognition are essential vision tasks and
the basements of many other senior applications.

Object detection and sub-category recognition are likely to
be separated into two parts in most of the existing methods,
recognition following after detection. However, detection and
recognition should not be separated completely. There are
some information coupling between them. The process of
detection can provide useful information for recognition. In
return, recognition can help to confirm or reject the results
of detection [2], [3]. Our idea is to combine detection and
sub-category recognition into an integrated framework. In the
joint approach, the coupling information can be fully used
to accomplish object detection and sub-category recognition
better simultaneously.

Our approach is mainly based on deformable part model
(DPM) [4], [5]. DPM is a very useful approach to detect
objects in static images. It is developed based on [6], [7].
And lots of researches are based on it in the recent years [8],
[9]. DPM uses E-HOG (Enhanced HOG), which is based on
HOG [10] but better than it. And latent SVM is used for model
training.

Figure 1 shows an DPM model for bicycle. A complete
DPM model is composed of several small models called com-
ponents with different aspect ratios. Each component consists
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Fig. 1: A DPM model for bicycle with two components.
Component in the first row captures sideways views of bicycle
while the second row captures frontal views. Every component
consists of three portions, a root filter, several part filters, and
a spatial model [4] . Our idea is to make each component
corresponding to one specific sub-category.

of three portions, a root filter, several part filters and a spatial
model. Root filter describes objects in a rough manner, part
filters in a detailed manner, and the spatial model is to describe
the relative positions among root filter and part filters. The
part filters and the components, offering lots of details about
objects, provide the possibility of our extension.

In this work, we integrate supervised sub-category recog-
nition into DPM training process, making every component
corresponding to one specific sub-category. It enables the mod-
el’s ability of simultaneous object detection and sub-category
recognition. In vehicle detection and recognition experiments,
both recall and precision of detection can reach higher than
95%, and the accuracy of recognition is also higher than 95%.
Compared with the original DPM, our approach does not spoil
the detection ability and gains a strong recognition ability.

II. PROBLEM FORMULATION

DPM uses sliding window scheme to detect objects in
static images using feature pyramid. The model with several
components is applied at every hypothetic position in the
feature pyramid. Using 𝑥 to stand for one example, we can
get different features such as 𝝓(𝑥, 𝑧). 𝑧 ∈ 𝑍 means the latent
variables described in [4], containing the choice of mixture
component and parts deformation. Next, the model parame-
ters 𝜷 and the corresponding feature execute a convolution
described as

𝑠𝑐𝑜𝑟𝑒(𝑥) = max
𝑧∈𝑍

𝜷 ⋅ 𝝓(𝑥, 𝑧). (1)
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Fig. 2: Structure of our model for simultaneous object detection and sub-category recognition. The whole model is separated
by sub-category difference into several portions. Every portion for one sub-category has several corresponding components.
Components for the same sub-category are divided by aspect ratio as in original DPM.

Then, a threshold is chosen to pick up the scores which are
bigger than it. Finally, non-maximum suppression is used to
find out the most suitable detection rectangle.

Using 𝑦𝑑 ∈ {+1,−1} to stand for the label for object
detection of example 𝑥 and 𝑑 denotes detection, the original
objective function of DPM can be described as

𝐿(𝜷) =
1

2
∥𝜷∥2+𝐶

𝑁∑
𝑖=1

max(0, 1−𝑦𝑑𝑖 max
𝑧∈𝑍

𝜷 ⋅𝝓(𝑥𝑖, 𝑧)). (2)

It accomplishes supervised object detection in training.

The structure of our model is shown in Figure 2. We
attempt to enable the trained model’s ability of accomplishing
simultaneous object detection and sub-category recognition
based on DPM. While different components have different
aspect ratios in DPM, our approach tries to make every sub-
category has its own corresponding components.

Let 𝑦𝑟𝑖 be the label for sub-category recognition, where
𝑟 denotes recognition. We try to bring supervision of sub-
category recognition into the training process. An simple
idea is adding punishments such as 0-1 loss to the objective
function of DPM directly to get

𝐿(𝜷) =
1

2
∥𝜷∥2 + 𝐶1

𝑁∑
𝑖=1

max(0, 1− 𝑦𝑑𝑖 max
𝑧∈𝑍

𝜷 ⋅ 𝝓(𝑥𝑖, 𝑧))

+ 𝐶2

∑

𝑦𝑑
𝑖 =+1

Δ(𝑦𝑟𝑖 , 𝑦
𝑟) (3)

where 𝑦𝑟 is actually specified by 𝑧 during the detection
process and 𝐶1, 𝐶2 are the weight terms. In equation (1),
once the latent variables 𝑧 is specified, we can get the sub-
category recognition result simultaneously. It’s to say that 𝑦𝑟

is corresponding to

𝑧 = argmax
𝑧∈𝑍

(𝜷 ⋅ 𝝓(𝑥𝑖, 𝑧)). (4)

However, it’s very hard to do optimization on equation
(3) directly. Because it’s difficult to find out an explicit
relationship between 𝜷 and Δ(𝑦𝑟𝑖 , 𝑦

𝑟) .

III. MULTI-OBJECTIVE OPTIMIZATION

To get an explicit relationship, some modification should be
made to equation (3). We can use

𝑆𝑖(𝜷) = 𝑀
(

max
𝑦𝑟∈{sub-category},𝑦𝑟 ∕=𝑦𝑟

𝑖

(
Δ(𝑦𝑟𝑖 , 𝑦

𝑟)

+ max
𝑧∈𝑍

𝜷 ⋅ 𝝓(𝑥𝑖, 𝑧 ∣ 𝑦𝑟))−max
𝑧∈𝑍

𝜷 ⋅ 𝝓(𝑥𝑖, 𝑧 ∣ 𝑦𝑟𝑖 )
)

(5)

as a surrogate function to replace the loss of sub-category
recognition, where 𝑀(𝑥) = max(0, 𝑥) and 𝑧 ∣ 𝑦𝑟 stands for
the latent variables with recognition label 𝑦𝑟. And it’s easy to
get 𝑆𝑖(𝜷) ⩾ Δ(𝑦𝑟𝑖 , 𝑦

𝑟).

Equation (5) comes from structural SVM but is a little
different from the original one [11], [12]. There are some extra
latent variables in equation (5) which makes it non-convex.
It’s actually a form of structural SVM with latent variables
[13]. Subsequently, we can get the following multi-objective
optimization function,

𝐿(𝜷) =
1

2
∥𝜷∥2 + 𝐶1

𝑁∑
𝑖=1

max
(
0, 1− 𝑦𝑑𝑖 max

𝑧∈𝑍
𝜷 ⋅ 𝝓(𝑥𝑖, 𝑧)

)

+ 𝐶2

∑

𝑦𝑑
𝑖 =+1

𝑀
(

max
𝑦𝑟∈{sub-category},𝑦𝑟 ∕=𝑦𝑟

𝑖

(
Δ(𝑦𝑟𝑖 , 𝑦

𝑟)+

max
𝑧∈𝑍

𝜷 ⋅ 𝝓(𝑥𝑖, 𝑧 ∣ 𝑦𝑟))−max
𝑧∈𝑍

𝜷 ⋅ 𝝓(𝑥𝑖, 𝑧 ∣ 𝑦𝑟𝑖 )
)
. (6)

A. Semi-convexity

Equation (6) is non-convex. When 𝑦𝑑𝑖 = −1, it’s convex but
not for 𝑦𝑑𝑖 = +1. It’s so-called semi-convexity. To solve this
problem, we introduce CCCP [13], [14]. Once the features in
the non-convex parts are specified, the two corresponding parts
become linear. Then the overall function turns to be convex.
In equation (6), for a given 𝜷𝒕, we use

𝝓𝒅(𝑥𝑖) = 𝝓
(
𝑥𝑖,max

𝑧∈𝑍
𝜷𝒕 ⋅ 𝝓(𝑥𝑖, 𝑧)

)
(7)

𝝓𝒓(𝑥𝑖) = 𝝓
(
𝑥𝑖,max

𝑧∈𝑍
𝜷𝒕 ⋅ 𝝓(𝑥𝑖, 𝑧 ∣ 𝑦𝑟𝑖 )

)
(8)
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to replace the two non-convex parts, getting

𝐿(𝜷) =
1

2
∥𝜷∥2 + 𝐶1

∑

𝑦𝑑
𝑖 =−1

max
(
0, 1 + max

𝑧∈𝑍
𝜷 ⋅ 𝝓(𝑥𝑖, 𝑧)

)

+ 𝐶1

∑

𝑦𝑑
𝑖 =+1

max
(
0, 1− 𝜷 ⋅ 𝝓𝒅(𝑥𝑖)

)

+ 𝐶2

∑

𝑦𝑑
𝑖 =+1

𝑀
(

max
𝑦𝑟∈{sub-category},𝑦𝑟 ∕=𝑦𝑟

𝑖

(
Δ(𝑦𝑟𝑖 , 𝑦

𝑟)+

max
𝑧∈𝑍

𝜷 ⋅ 𝝓(𝑥𝑖, 𝑧 ∣ 𝑦𝑟))− 𝜷 ⋅ 𝝓𝒓(𝑥𝑖)
)
. (9)

Equation (9) then turns as convex and 𝐿(𝜷) ⩾ 𝐿(𝜷). It can be
used as the surrogate function of equation (6). Then, standard
convex optimization methods could be used, and we use L-
BFGS, as used in DPM [15].

B. Cache policy

Considering about equation (9), there are two maximization
operations among latent variables 𝑍 related with parameters
𝜷. It’s very time-consuming and not acceptable in practice.
There is also a similar problem during the training process
of DPM. Cache policy was introduced there [4]. DPM builds
a cache 𝐶𝑑 for object detection. Based on it, we introduce a
similar cache named 𝐶𝑟 for sub-category recognition.

Between two sequential optimization iterations, 𝜷 changes
in a small range and the features picked in the maximization
operations in equation (9) should be near each other. So we
can build caches to hold the features near the feature which
gets the highest score at a specific 𝜷𝒕. It reduces the space of
latent variables to a great extent, in which the model searches
for the highest response scores.
𝐶𝑟 could be built during the period of specifying surrogate

function. Because they both require the model to be applied
to the feature pyramids of positive examples for detection,
searching for the corresponding features in each condition.
𝐶𝑑 is built on negative examples as described in DPM.

C. Initialization

The multi-objective optimization function isn’t convex.
Though we’ve found out a way to do optimization on it,
there’s no guarantee that the globally optimal solution can
be reached. It’s somehow like EM algorithm. And it has a
strong relationship with the initial parameters. So a careful
initialization to the parameters is essential. We firstly use linear
SVM to initialize every component with the corresponding
sub-category examples, to get the initial parameters.

IV. EXPERIMENT

A. SJTUVehilce data set

To validate the performance of our approach, we collect
about 270 thousands images about vehicles. About 5500
images are picked up to build a vehicle data set named
SJTUVehicle. The location and sub-category information of
the vehicles are annotated manually. We regard the vehicles
as four different sub-categories, namely car, bus, minibus and

TABLE I: Distribution of the SJTUVehicle data set.

Set Pictures Car Minibus Bus Truck
Train 1827 905 518 236 430
Val 609 324 181 67 131
Test 3045 1575 837 391 668
Total 5481 2804 1536 694 1229

Fig. 3: Comparison of vehicle detection result between our
approach and the original DPM.

truck. Details about the SJTUVehicle data set are shown in
Table I.

B. Experimental setting

In our experiments, we pick the images from train set shown
in Table I of SJTUVehicle data set as the positive examples
and some images without vehicles in PASCAL VOC 2007 [16]
as the negative. We try to detect vehicles in every image and
classify each vehicle as car, bus, minibus or truck.

For every component, there are six part filters. For every
sub-category, there are four components especially for it. There
are sixteen components in total in our trained model.

C. Vehicle detection

We first test the vehicle detection ability of the newly
trained model. The results are shown in Figure 3. The average
precision is about 90.77%. In detail, the recall and precision
can both reach higher than 95% with a suitable threshold. This
result shows that our approach is effective on vehicle detection.

We trained an original DPM model with the same number
of components and part filters as our newly trained model for
vehicle detection. As shown in Figure 3, the two P-R curves
are nearly the same. The average precision of vehicle detection
of the original DPM model is about 90.77%, which is the same
as our proposed approach. That’s to say, our extension does
not spoil detection ability of the original DPM model.

D. Vehicle recognition

We also test the vehicle recognition ability. Because d-
ifferent recognition results can be obtained with different
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thresholds, so firstly we use F-Measure1 of vehicle detection
to find a proper threshold on validation set. When threshold
is set as 0.15, F-Measure reaches the biggest. That means
the precision and recall of vehicle detection achieve balance
to some degree. Then we evaluate vehicle recognition results
based on this threshold. Only the detected vehicles which are
true positives, are used to evaluate the recognition ability, as
there are no sub-category information for the false positives.

When the threshold is set as 0.15, vehicle recognition results
are shown in Table II and the confusion matrix is shown in
Figure 4(a). The overall accuracy of vehicle recognition is
about 97.08%. The precision of vehicle detection is about
97.36% and the recall is about 96.83%. We show the examples
of vehicle detection and recognition in Figure 5.

Using a linear SVM combined with HOG to do vehicle
recognition, the overall accuracy is about 89.77%. And the
confusion matrix is shown in Figure 4(b). It’s obvious that
our approach is much better.

TABLE II: Vehicle recognition result.

Type Accuracy Precision Recall F-Measure
Car 0.9824 0.9693 0.9928 0.9809
Minibus 0.9774 0.9673 0.9390 0.9529
Bus 0.9946 0.9837 0.9678 0.9757
Truck 0.9872 0.9717 0.9612 0.9664

(a) Our approach (b) HOG+SVM

Fig. 4: Confusion matrix of vehicle recognition

V. DISCUSSION

Our proposed approach extends DPM’s detection to simul-
taneous detection and sub-category recognition. A new multi-
objective optimization problem is introduced and structural
SVM with latent variables is used. Detailed method to solve
the problem is also given by strict mathematical analysis. The
experiment on vehicle shows our approach doesn’t spoil the
detection ability of original DPM and enable the model a
strong sub-category recognition ability.

The feature used in our experiment is E-HOG, and it seems
not suitable for every task. So, it could be replaced by features
from deep learning to gain a better performance in the future.

1F-Measure = 2𝑃𝑅
𝑃+𝑅

,where 𝑃 stands for the precision of detection and 𝑅
stands for the recall of detection.

Fig. 5: Examples of vehicle detection and recognition result.
The red rectangle stands for the detection result and the green
text stands for the label from vehicle recognition.
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